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Abstract
We construct N-soliton solutions to the equation called Q3 in the recent
Adler–Bobenko–Suris classification. An essential ingredient in the construction
is the relationship of (Q3)δ=0 to the equation proposed by Nijhoff, Quispel
and Capel in 1983 (the NQC equation). This latter equation has two extra
parameters, and depending on their sign choices we get a 4-to-1 relationship
from NQC to (Q3)δ=0. This leads to a four-term background solution, and then
to a 1-soliton solution using a Bäcklund transformation. Using the 1SS as a
guide allows us to get the N-soliton solution in terms of the τ -function of the
Hirota–Miwa equation.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

Integrable lattice equations have a long history, going back to pioneering work in the 1970s
[1, 2] with subsequent development of systematic approaches in the early 1980s [3–5] (cf
also the review [6]). It has long been known, in fact it is implicit in these constructions, that
the emerging examples possess the property of ‘multidimensional consistency’. By this we
mean the property that the partial difference equation describing the lattice systems can be
consistently embedded in a multidimensional space, with in principle an infinity of lattice
variables. Most succinctly this property was described in recent years in [7], in a context
where it was explicitly used to achieve multidimensional reductions, and it was subsequently
re-appraised in [8]. This multidimensional consistency is a very natural property, it is the
precise analogue of the well-known existence of compatible higher time-flows in hierarchies
of soliton systems, and as such it was quite well understood in the earlier publications
mentioned.

In [9], the property of ‘consistency around a cube’ (CAC) was used to classify
partial difference equations defined on an elementary square of a two-dimensional lattice.
Remarkably, within certain conditions (symmetry and the ‘tetrahedron condition’), a full
list of scalar quadrilateral lattice equations could be established, and this list is surprisingly
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short. (In a more recent paper [10], the classification statement was proven under slightly less
restrictive conditions.)

The list of CAC-integrable lattice equations in [9] contains some interesting examples,
but the equation at the top of the list (denoted as Q4 in [9]) was actually found earlier by
Adler (cf [11]). This equation, which we refer to as Adler’s equation, is in fact an integrable
discretization of the famous Krichever–Novikov (KN) equation [12, 13]. For Adler’s equation
a Lax pair was established in [14] on the basis of its multidimensional consistency, and in [15]
this equation was shown to be a master equation among various well-known integrable systems
associated with an elliptic curve. The first solutions for Adler’s equation were established in
a recent paper [16] (cf also [17] for a slight generalization of those results). However, so far
little is known about the algebraic structure behind Adler’s equation, and since this equation
has lattice parameters which lie on an elliptic curve, the underlying structure is expected to
be interesting but rather complicated. Thus, before tackling Adler’s equation, it is of interest
to study some of the other examples emerging from the list of [9], in order to see how the
underlying structure of such equations can be revealed.

Here we focus on the equation denoted as Q3 in [9] and which is just below Q4 in the
hierarchy. It is written as

p
o
(1 − q

o2)(ûu + ũ̃̂u) − q
o
(1 − p

o2)(ũu + û̃̂u) − (p
o2 − q

o2)(̂ũu + û̃u)

= δ2(p
o2 − q

o2)(1 − p
o2)(1 − q

o2)/(4p
o
q
o
). (1.1)

In (1.1) we have adopted the convention of representing shifts in the rectangular lattice with
tildes and hats. The corners of an elementary plaquette on a rectangular lattice are thus

u ≡ un,m, ũ ≡ un+1,m, û ≡ un,m+1, ̂̃u ≡ un+1,m+1.

The lattice parameters p
o
, q

o in (1.1) are associated with the n,m directions in the lattice,
respectively (they can be thought of as measuring the grid size in these directions), while δ is
a global parameter.

In this paper we construct a general family of N-soliton solutions of Q3. The construction
of these solutions is based on the relationship of (1.1) to a lattice equation that first appeared
in [3] (cf also [4]) about 25 years ago, and which is equivalent to the δ = 0 case of Q3.
The explicit 4-to-1 relationship between these two equations is explained in section 2, and it
requires the introduction of another parametrization which is more suitable for the solution.
The N-soliton solution of Q3 with parameter δ (denoted by (Q3)δ) then appears as a linear
combination of four independent solutions of the δ = 0 case, (Q3)0, with four arbitrary
coefficients subject to one single relation. We have obtained this result in two different ways,
one of which employs a novel Miura transformation (explained in the appendix), which allows
us to derive soliton solutions for (Q3)δ from the known solutions of (Q3)0 of [3, 4]. We will
not present this approach here, because it requires quite a bit of a notational machinery for
which we lack space in this paper, and this approach will be published elsewhere [18].

Alternatively, we can use the 4-to-1 correspondence which appears through the
introduction of some additional lattice shifts associated with the parametrization given in
section 2, to obtain a general ‘seed’ solution for the relevant Bäcklund transformations. This
allows us in section 3 to obtain the 1-soliton solution in a form which suggests a τ -function
description. We will present the N-soliton solution of Q3 in Hirota form in section 4, and show
how the solution is related to a set of discrete Hirota–Miwa equations in a four-dimensional
lattice.
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2. The basic lattice equations

The special case δ = 0 of (1.1) appeared for the first time in [3] (cf also [4]) in the form

1 + (p − a)s − (p + b)̃s

1 + (q − a)s − (q + b)̂s
= 1 + (q − b)̃s − (q + a)̂̃s

1 + (p − b)̂s − (p + a)̂̃s
. (2.1)

We call this the NQC equation, following [19].
To bring equation (2.1) to the form of (Q3)0 we perform the transformation (a + b �= 0):

un,m = τnσm

(
sn,m − 1

a + b

)
, (2.2)

where

τ :=
√

(p + a)(p + b)

(p − a)(p − b)
, σ :=

√
(q + a)(q + b)

(q − a)(q − b)
. (2.3)

This yields (Q3)0 with the parametrization

P(ûu + ũ̃̂u) − Q(ũu + û̃̂u) − (p2 − q2)(̂ũu + û̃u) = 0, (2.4)

where the lattice parameters have now become points p = (p, P ) and q = (q,Q), respectively,
on the (Jacobi) elliptic curve:

P 2 = (p2 − a2)(p2 − b2), Q2 = (q2 − a2)(q2 − b2). (2.5)

In this parametrization the δ �= 0 version of (1.1) reads

P(ûu + ũ̃̂u) − Q(ũu + û̃̂u) − (p2 − q2)(̂ũu + û̃u) = δ2 (p2 − q2)

4PQ
, (2.6)

where the functions u in (1.1) and (2.6) are related by u1.1 = (a2 − b2)u2.6.
Note that the original parametrization of Q3 in (1.1) is subtly different from (2.4) and

they can be related by the identifications1:

p
o2 = p2 − b2

p2 − a2
, q

o2 = q2 − b2

q2 − a2
, P = (b2 − a2)p

o

1 − p
o2

, Q = (b2 − a2)q
o

1 − q
o2

.

(2.7)

It is important for later to observe that the parametrizations of P,Q,p
o
, q

o are invariant
under the sign change of a and/or b while the NQC equation itself is not. This means that
there are in fact four different versions of NQC (corresponding to these sign changes) and they
all provide a different solution to (Q3)0, though the transformation (2.2) with corresponding
sign changes in it and (2.3). We will use this 4-to-1 correspondence later to construct solutions
to Q3.

It was shown in [3] that (2.1) interpolates through different choices of the auxiliary
parameters a, b between various lattice equations ‘of KdV type’, and hence could be thought
of as an interpolating equation. We can identify, e.g. the following subcases of (2.1) appearing
in the list of [9] (up to gauge transformations, where necessary): a = b = 0 ⇒ (Q1)0, a =
0, b → ∞ ⇒ (H3)0 and a, b → ∞ ⇒ H1, which are respectively the lattice Schwarzian KdV
equation, the lattice potential modified KdV equation and the lattice potential KdV equation.
For (2.1) and all these subcases N-soliton solutions can be given in closed form, which follows
as an immediate application of the direct linearization scheme elaborated in [3, 4].

1 In fact, the two different parametrizations presented in (1.1) and (2.6) are just different ways to parametrize the
equation c1(ûu+ ũ̃̂u)−c2(ũu+ û̃̂u)−c3 (̂ũu+ û̃u) = c4, with the constraints arising from CAC (related to dependence
of ci on lattice parameters associated with different directions of the cube).
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3. Background and one-soliton solutions

3.1. Seed or background solution for Q3

The trivial solution to (2.1) is sn,m ≡ 0 and from this it follows that un,m = cτnσm is a
background or ‘seed’ solution for (Q3)0 for any constant c. Furthermore, as discussed before,
by changing the signs of a and/or b we get other seed solutions for (Q3)0, namely

u++
n,m = Aτnσm, u−−

n,m = Bτ−nσ−m, u+−
n,m = Cτ̇nσ̇m, u−+

n,m = Dτ̇−nσ̇−m,

(3.1)

where τ and σ were defined in (2.3) and

τ̇ :=
√

(p + a)(p − b)

(p − a)(p + b)
, σ̇ :=

√
(q + a)(q − b)

(q − a)(q + b)
. (3.2)

Starting with one such seed solution for (Q3)0 one can use a Miura transformation (see the
appendix) to derive a solution for (Q3)δ . The result turns out to be a linear combination of
three of the above terms, and leads us to try a linear combination of all four terms, that is

uθ ≡ u0SS
n,m = Aτnσm + Dτ−nσ−m + Bτ̇nσ̇m + Cτ̇−nσ̇−m. (3.3)

It is easy to verify that this is indeed a solution of (Q3)0 provided that

AD(a + b)2 − BC(a − b)2 = 0, (3.4)

and, perhaps surprisingly, that (3.3) is also a solution of (Q3)δ , provided that

AD(a + b)2 − BC(a − b)2 = − δ2

16ab
. (3.5)

From this last result we see that when δ �= 0 one cannot use any single seed given in (3.1) as a
starting solution, and for a ‘germinating seed’ (in the terminology of [16]) one needs at least
the pair ++,−− or the pair +−,−+.

3.2. 1-Soliton solution (Q3)δ from BT

Having obtained a nontrivial background solution (3.3), we can now proceed to construct
soliton solutions starting from this seed solution of the Bäcklund transformation (BT). From
cubic consistency it follows that we can impose in addition to the lattice equation (2.4) also
the set of equations:

P(uu + ũ̃u) − K(ũu + ũu) = (p2 − k2)

(
ũu + ũu +

δ2

4PK

)
, (3.6a)

Q(uu + û̂u) − K(ûu + ûu) = (q2 − k2)

(
ûu + ûu +

δ2

4QK

)
, (3.6b)

where K2 = (k2 − a2)(k2 − b2), and the ‘bar’-direction is for increasing number of solitons.
We now search for a new u(≡u1SS) of the form: u = uθ + v, where uθ is the bar-shifted
background solution (3.3)

ūθ = Aτnσmκ + Dτ−nσ−mκ−1 + Bτ̇nσ̇mκ̇ + Cτ̇−nσ̇−mκ̇−1, (3.7)

where

κ =
√

(k + a)(k + b)

(k − a)(k − b)
, κ̇ =

√
(k + a)(k − b)

(k − a)(k + b)
. (3.8)
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(Note however that we can absorb the κ, κ̇ factors into A,B,C,D without changing the
relation (3.4) or (3.5).)

From (3.6) one can then solve

ṽ = [(p2 − k2)̃uθ + Kũθ ) − Puθ ]v

−Kv + [P ũθ − Kuθ − (p2 − k2)uθ ]
, v̂ = [(q2 − k2)̂uθ + Kûθ ) − Quθ ]v

−Kv + [Qûθ − Kuθ − (q2 − k2)uθ ]
(3.9)

where the expected δ2 term in the numerator disappears by virtue of the definitions (3.7), (3.5).
Then introducing v = f/g we can linearize these equations and obtain

φ̃ = �

(
(p2 − k2)̃uθ + Kũθ − Puθ 0

−K P ũθ − Kuθ − (p2 − k2)uθ

)
φ (3.10)

and similarly for φ̂, where φ = (f, g)T . The factor � is determined by the condition that
the shifts with ˜ and ̂ must commute, from which it follows that we should take � ∝ 1/Uθ ,
where (compare with (3.3)

(Uθ )n,m = (a + b)Aτnσm − (a + b)Dτ−nσ−m + (a − b)Bτ̇ nσ̇m − (a − b)Cτ̇−nσ̇−m.

(3.11)

Then with some algebra we obtain

φn,m = (p − k)n(q − k)m

(
ρn,m(Uθ)n,m/(Uθ)0,0 0
K
2k

[1 − ρn,m]/(Uθ)0,0 1

)
φ0,0, (3.12)

where ρn,m is the discrete ‘plane-wave factor’, defined by

ρn,m =
(

p + k

p − k

)n (
q + k

q − k

)m

. (3.13)

From result (3.12) we can reconstruct v of the 1SS:

vn,m = 2k(Uθ)n,mρn,mv0,0

2k(Uθ)0,0 + Kv0,0(1 − ρn,m)
, (3.14)

and finally u1SS
n,m = ūθ + v.

For a more explicit form showing the A,B,C,D dependence, we incorporate a constant
ρ0 in (3.13) so that the denominator becomes proportional to 1 + ρn,m. Furthermore, after
scaling A,B,C,D so that ūθ of (3.7) becomes u0SS of (3.3) we can write the 1SS (3.14) as

u1SS
n,m =

[
Aτnσm

(
1 + ρn,m

(a − k)(b − k)

(a + k)(b + k)

)
+ Dτ−nσ−m

(
1 + ρn,m

(a + k)(b + k)

(a − k)(b − k)

)
+ Bτ̇nσ̇m

(
1 + ρn,m

(a − k)(b + k)

(a + k)(b − k)

)
+ Cτ̇−nσ̇−m

(
1 + ρn,m

(a + k)(b − k)

(a − k)(b + k)

)] /
(1 + ρn,m). (3.15)

4. N-soliton solutions and Hirota bilinear form

We will now present the main result of the paper, which is a general N-soliton solution of Q3.
This solution can be written in the following form:

un,m = Aτnσm F(n,m, α + 1, β + 1)

F (n,m, α, β)
+ Dτ−nσ−m F(n,m, α − 1, β − 1)

F (n,m, α, β)

+ Bτ̇nσ̇m F (n,m, α + 1, β − 1)

F (n,m, α, β)
+ Cτ̇−nσ̇−m F(n,m, α − 1, β + 1)

F (n,m, α, β)
, (4.1)

5
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where the τ -function F is given by

F(n,m, α, β) =
∑

µj ∈{0,1}
exp

⎛⎝ N∑
j=1

µjηj +
∑

1�i<j�N

µiµjaij

⎞⎠ , (4.2)

where

exp ηj ≡ ρnmαβ(kj ) :=
(

p + kj

p − kj

)n (
q + kj

q − kj

)m (
a − kj

a + kj

)α (
b − kj

b + kj

)β

ρ0
j , (4.3)

exp aij ≡ Aij :=
(

ki − kj

ki + kj

)2

, (4.4)

and the coefficients in (4.1) are restricted by

AD(a + b)2 − BC(a − b)2 = − δ2

16ab
. (4.5)

One way in which this result was derived is by using the Miura transformation given in
the appendix and a number of relations following from the direct linearization structure of the
NQC equation of [3, 4]. A full derivation following this line of argument is given in [17],
and here, for lack of space, we will instead argue the result based on the connection with the
Hirota–Miwa difference equations [20, 21].

Having established the 1SS (3.15), which is a special case of form (4.1) with (4.2), we
checked the 2SS suggested by Hirota’s perturbative approach

F(n,m, α, β) = 1 + ρnmαβ(k1) + ρnmαβ(k2) + A12ρnmαβ(k1)ρnmαβ(k2) (4.6)

and verified that the phase factor Aij is given as in (4.4). We have also explicitly verified that
the 3SS version solves Q3.

The form of the phase factor (4.4) allows us to identify the solution to be in the Hirota–
Miwa hierarchy [20, 21], within the reduction −qi = pi ≡ ki (up to some notational
conventions for the parameters), except that we now seem to have a 4D system n,m, α, β

with diagonal [(α ± 1, β ± 1)] and anti-diagonal [(α ± 1, β ∓ 1)] reductions.
The N-soliton F in (4.2) solves the Hirota–Miwa bilinear difference equations in any three

of the four indices, e.g.

(q + a)F1F23 − (a + p)F2F13 + (p − q)F12F3 = 0, (4.7a)

(q + b)F1F24 − (b + p)F2F14 + (p − q)F12F4 = 0, (4.7b)

(p − q)F123F + (q − a)F13F2 − (p − a)F1F23 = 0, (4.7c)

(p − q)F124F + (q − b)F14F2 − (p − b)F1F24 = 0. (4.7d)

Here we have used the notation where only the shifted index is indicated, e.g. Fn,m+1,α+1,β+1 ≡
F234. The shift in the negative direction is indicated by a bar, e.g. Fn,m,α−1,β+1 ≡ F3̄4. In the
following we also need the various shifts of these equations. (The equations above would be
more symmetric if we were to change a → −a, b → −b, cf (4.3).)

We now show that the expression (4.1) is a solution of equation (2.6), if F solves the HM
equations (4.7). First, we note that since (2.6) is quadratic except for the inhomogenous term,
the substitutions of (4.1) give terms quadratic in the coefficients A,B,C,D. Thus we have
three types of terms: (i) squared terms that go with A2, B2, C2,D2 and have distinguished
factors (τ 2nσ 2m)±1 or (τ̇ 2nσ̇ 2m)±1, (ii) mixed terms of the type AB,AC,DB,DC, with factors

6
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of the type (τ nσm)±1(τ̇ nσ̇ m)±1 and (iii) terms of the type AD and BC (and the constant on
the RHS) in which the factors containing τ, σ , etc cancel each other.

It turns out that the above three types of coefficients separate from each other and lead to
a number of relations that are independently valid on the basis of the Hirota–Miwa equations
(4.7). For example the coefficient of C2 (or τ̇−2nσ̇−2m) is quartic in the F’s, but it can be
decomposed into various combinations of (4.7) as follows:

F23̄ × (coeff. of C2) ∝ [(4.7c)3̄F123̄4 − (4.7d)3̄F12][(a + q)F2F3̄4 − (b + q)FF23̄4]

− [(4.7a)3̄F3̄4 − (4.7b)3̄F)][(a − p)F2F123̄4 − (b − p)F12F23̄4]

and similarly for the coefficients of A2, B2, C2. The coefficient of AB, on the other hand, is
proportional to

{[−(4.7b)3F + (4.7c)F34][(a + p)F2F1234̄ − (b + p)F12F234̄]

+ [(4.7b)34̄F12 − (4.7a)F1234̄][(a − q)F2F34 + (b + q)FF234]}(b − p)(b − q)

−{[(4.7d)34̄F − (4.7c)F34̄][(a + p)F2F1234 + (b − p)F12F234]

− [(4.7d)3F12 − (4.7a)F1234][(a − q)F2F34̄ − (b − q)FF234̄]}(b + p)(b + q)

and similar formulae can be written for the coefficients of AC,DB and DC.
This leaves the equation containing AD,BC and δ2, which can be written as

ADR(b) + BCR(−b) + δ2S = 0 (4.8)

where R and S are some expression in F and the parameters and S does not depend on b. The
reflection property with respect to b is obvious when one considers the role of b in (2.3), (3.2),
(4.1), (4.3).

One of the fundamental assumptions before was that although the coefficients A,B,C,D

may depend on δ, the soliton part F does not. Thus equation (4.8) should hold under (4.5),
whether or not δ = 0. If δ = 0 we get immediately the condition

(a − b)2R(b) + (a + b)2R(−b) = 0 (4.9)

and then using this we get for δ �= 0

R(b) − 16ab(a + b)2S = 0. (4.10)

If (4.10) holds, so does its b → −b reflection, and they together imply (4.9). In full detail
equation (4.10) reads

F123̄4F134̄F2F(a + p)(a − p)(a − q)(b + p)(b − p)(b + q)

−F123̄4F1F234̄F(a − p)(a + q)(a − q)(b + p)(b + q)(b − q)

+F123̄4F1F2F34̄(a − p)(a − q)(b + p)(b + q)(p + q)(p − q)

+ F1234̄F13̄4F2F(a + p)(a − p)(a + q)(b + p)(b − p)(b − q)

−F1234̄F1F23̄4F(a + p)(a + q)(a − q)(b − p)(b + q)(b − q)

+ F1234̄F1F2F3̄4(a + p)(a + q)(b − p)(b − q)(p + q)(p − q)

+ F12F13̄4F234̄F(a − p)(a + q)(b + p)(b − q)(p + q)(p − q)

−F12F13̄4F2F34̄(a − p)(a + q)(a − q)(b + p)(b + q)(b − q)

+ F12F134̄F23̄4F(a + p)(a − q)(b − p)(b + q)(p + q)(p − q)

−F12F134̄F2F3̄4(a + p)(a + q)(a − q)(b − p)(b + q)(b − q)

+ F12F1F23̄4F34̄(a + p)(a − p)(a − q)(b + p)(b − p)(b + q)

+ F12F1F234̄F3̄4(a + p)(a − p)(a + q)(b + p)(b − p)(b − q)

− 4F12F1F2F(a + b)2(p + q)(p − q)ab = 0. (4.11)

7
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In order to prove (4.11) we need in addition to equations (4.7) another relation, namely

(p − a)(q + a)F13̄F23 − (p + a)(q − a)F13F23̄ − 2a(p − q)FF12 = 0, (4.12)

and its 3 → 4, a → b version. While it is straightforward to show that (4.12) is satisfied by
the NSS (4.1), the implementation of this equation together with (4.7) (and their various shifts
and reflections) to prove (4.11) is rather complicated and was done with the help of computer
algebra (REDUCE, [23])

5. Conclusions

In this paper we have constructed the N-soliton solution to Q3 (2.6). This was done through
an associated equation, the NQC equation (2.1), which contains extra parameters a, b. The
correspondence from NQC to (Q3)0 is 4-to-1, labeled by the different sign combinations of
a, b, and this leads us to a four-term background solution (3.3), from which the 1SS (3.15)
and then the NSS (4.1) is constructed. The solutions contain the new parameters a, b in an
essential manner and it is intriguing that here the natural parameters seem to be p, q rather
than p

o
, q

o—a geometric interpretation to this would be interesting. An important observation
is the relationship with the Hirota–Miwa equation with four variables.

A proof based on the known NSS of the NQC equation, as well as other details and
properties will be given elsewhere [18].
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Appendix A. Miura transformation between (Q3)0 and (Q3)δ

In section 3 we constructed a 1SS (3.15) starting with the most general 0SS (3.3) and using the
CAC-cube, in which the vertical direction associated with the Bäcklund transformation. Here
we again use the CAC-cube, but now the bottom layer is (Q3)δ , the top layer (Q3)0, with the
sides providing linear equations by which a solution of (Q3)0 can be transformed into a solution
of (Q3)δ . For example the well-known NSS, corresponding to A = 1, B = C = D = 0,
which satisfies (3.4) but not (3.5), can be transformed into a solution of (Q3)δ and therefore
this transformation should generate at least a B term [18].

A.1. Derivation of Miura transformation

In order to get the δ = 0 version of (2.6) on the top layer of the cube we use a simple scaling
argument. Let us again denote the vertical shift by a bar and introduce the scaling u = v/ε,
with ε → 0, where v solves (Q3)0. In this limit the top equation immediately becomes (2.4).
For the side equation we get first

P(uv + ũ̃v) − εR

(
ũu +

1

ε2
vṽ

)
= (p2 − r2)

(
ũv + ũv +

εδ2

4PR

)
,

and a similar equation for the shift in the other lattice direction associated with q. Arranging
the parameter R to be of order ε, i.e. R = εR0 with R0 finite and nonzero as ε → 0, yields in
dominant order in ε the equation

P(uv + ũ̃v) − R0vṽ = (p2 − r2)

(
ũv + ũv +

δ2

4PR0

)
.
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However, we must respect the parametrization of (2.5), which now reads

ε2R2
0 = (r2 − a2)(r2 − b2),

and this can only be of the right order in ε if r2 = a2 + ε2r2
0 , or r2 = b2 − ε2r2

0 with r0 finite
as ε → 0. Hence, R2

0 = r2
0 (a2 − b2) , but since r0 is arbitrary, we may keep R0 arbitrary

and only remember that either r2 = a2 or r2 = b2. Thus, we are led to the following Miura
transformation between (Q3)δ and (Q3)0:

P(uv + ũ̃v) − Rvṽ = (p2 − r2)

(
ũv + ũv +

δ2

4PR

)
, (A.1a)

Q(uv + û̂v) − Rvv̂ = (q2 − r2)

(
ûv + ûv +

δ2

4QR

)
, (A.1b)

where we have suppressed the suffix 0.
In (A.1) v is the solution of (Q3)0 and u a corresponding solution of (Q3)δ , and we note

that the resulting equations are actually linear in the new solution u:

[Pv − (p2 − a2)̃v]u + [P ṽ − (p2 − a2)v]̃u = Rvṽ +
δ2(p2 − a2)

4PR
, (A.2a)

[Qv − (q2 − a2)̂v]u + [Qv̂ − (q2 − a2)v]̂u = Rvv̂ +
δ2(q2 − a2)

4QR
, (A.2b)

where we have chosen r2 = a2. It can be shown that the Miura transformations (A.2)
commute on the two-dimensional lattice (since the lattice equations obeyed by v belong to a
set of multidimensionally consistent equations), as a consequence of which we can ‘integrate’
the linear relations (A.2a) and (A.2b) simultaneously in both lattice directions to obtain a
well-defined solution.

Other Miura-type transformations between various members of the ABS list of lattice
equations, and related equations that can be obtained by degeneration have been constructed
[22].

A.2. From seed of (Q3)0 to the seed of (Q3)δ

We now apply the Miura transformation (A.1) starting with v given by the background solution
vn,m = −τnσm/(a + b). In that case the coefficients of the linear relation (A.2a) are given by

Pv − (p2 − a2)̃v = P

p − b
τnσm, P ṽ − (p2 − a2)v = − P

p + b
τn+1σm, (A.3)

and similarly for the coefficients of (A.2b) interchanging the roles of p and q and of n and m.
Inserting these coefficients we obtain the linear equations

u − p − b

p + b
τ ũ = R(p − b)

P (a + b)2
τn+1σm +

δ2

4(p + b)R
τ−nσ−m, (A.4a)

u − q − b

q + b
σ û = R(q − b)

Q(a + b)2
τnσm+1 +

δ2

4(q + b)R
τ−nσ−m. (A.4b)

The first relation can be integrated w.r.t. the variable n, using τ̇ n defined in (3.2) as integrating
factor, and we obtain

u0,m − τ̇ nun,m = Rσm

2a(a + b)2

[(
p + a

p − a

)n

− 1

]
− δ2σ−m

8bR

[(
p − b

p + b

)n

− 1

]
.
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What is significant here is that the coefficients on the right-hand side no longer depend on the
lattice parameter p, and that p and q only occur through the discrete ‘exponentials’. Obviously
a similar relation can be obtained from (A.4b) integrating w.r.t. variable m, and the result is
given by simply interchanging p ad q and the roles of n and m;

un,0 − σ̇ mun,m = Rτn

2a(a + b)2

[(
q + a

q − a

)m

− 1

]
− δ2τ−n

8bR

[(
q − b

q + b

)m

− 1

]
,

with σ̇ defined in (2.3).
Now we can either take the first result and add a multiple of the second result at n = 0,

or take the second result and add a multiple of the first result at m = 0, thus eliminating the
intermediate terms u0,m and un,0 respectively. In either way we get the following result:

un,m = −τnσm R

2a(a + b)2
+ τ−nσ−m δ2

8bR
+ τ̇−nσ̇−m

(
u00 − δ2

8bR
+

R

2a(a + b)2

)
.

Thus, starting with the background solution for (Q3)0 with A = 1, B = C = D = 0 we
generated a solution of (Q3)δ with A = −R/(2a(a + b)2), B = δ2/(8bR), C = 0,D �= 0,
which indeed satisfies constraint (3.5).

This three-term solution can be suggestively written as follows:

un,m = Aτnσm + Cτ̇−nσ̇−m + Dτ−nσ−m,

which contains all but one of the possible sign interchangements of the parameters a and b in
the discrete exponential factors. This seems to suggest that there is one term missing, indeed,
another three-term solution with A,B,D would be obtained by using a Miura transformation
with r2 = b2, instead of r2 = a2, which we used in (A.2). Thus we reach ansatz (3.3).
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